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We study the two sets of self-dual Yang-Mills equations in eight dimensions 
proposed in 1983 by E. Corrigan et aL and show that one of these sets forms an 
elliptic system under the Coulomb gauge condition, and the other (over- 
determined) set can have solutions that depend at most on N arbitrary constants, 
where N is the dimension of the gauge group, hence the global solutions of both 
systems are finite dimensional. We describe a subvariety ~8 of the skew-symmetric 
8 • 8 matrices by an eigenvalue criterion and we show that the solutions of the 
elliptic equations of Corrigan et al. are among the maximal linear submanifolds 
of~8. We propose an eighth-order action for which the elliptic set is a maximum. 

1. I N T R O D U C T I O N  

The self-duality o f  a 2-form in four dimensions is defined to be the Hodge  
duality. Self-dual and anti-self-dual 2-forms can equivalently be described as 
eigenvectors o f  the complete ly  antisymmetric  fourth-rank tensor eijkl. The 
latter approach was pursued by Corr igan et  al. (1983) ,  and self-dual 2-forms 
in n dimensions are defined as eigenvectors of  a completely antisymmetric 
tensor invariant under a subgroup G of  SO(n) .  Then, various linear self- 
duality equations are obtained by specifying G. In this paper we will study 
two sets o f  equations in eight dimensions arising f rom invariance under 
SO(7). These equations, denoted by Set  a and Set  b, are given in Section 2. 

Set  b consisting o f  21 equations occurs in connect ion with other defini- 
tions o f  self-duality. The "strongly self-dual" 2-forms defined in Corrigan et 

al. (1983) are characterized by the property that their coefficients oJ =( to i i  ) 
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with respect to an orthonormal basis satisfy the equation 0)0)t = k/, where 
k is a nonzero constant. It is shown (Bilge et al., 1996; Bilge, 1995) that 
this definition is equivalent to the self-duality definitions of Grossman et al. 
(1984) and Trautman (1977) and strongly self-dual 2-forms constitute an (n 2 
- n + 1)-dimensional submanifold 5f 8 U {0} (see Definition 3.1). In eight 
dimensions the maximal linear submanifolds of strongly self-dual 2-forms 
form a six-parameter family of seven-dimensional spaces, and solutions of 
Set  b are among these maximal linear submanifolds (Bilge et al., 1995). 

The solutions of Set  a and Set  b can be viewed as analogs of self-dual 
2-forms in four dimensions from different aspects. The strongly self-dual 2- 
forms, hence the solutions of Set  b, saturate various topological lower bounds 
(Bilge et al., 1996; Bilge, 1995), but they form an overdetermined system. 
In Section 2 we show that the solutions of Set  b for an N-dimensional gauge 
group depend exactly on N arbitrary constants, provided that the system is 
consistent. Thus Set  b lacks the rich structure of the self-duality equations 
in four dimensions. On the other hand, the solutions of Set  a do not saturate 
the topological lower bounds obtained in Bilge et al. (1996) and Bilge (1995), 
but these equations form an elliptic system under the Coulomb gauge 
condition. 

In Section 3, we give an eigenvalue criterion to define a subvariety ~8 
of 8 X 8 skew-symmetric matrices and we show that it contains the solutions 
of Set  a as a maximal linear submanifold. We give an eighth-order action 
whose extrema are achieved on ~8. 

2. THE SELF-DUALITY EQUATIONS OF CORRIGAN E T  AL .  

We will study the self-duality equations (3.39) and (3.40) of Corrigan 
et al. (1983), which describe a scalar field F which is an eigenvector of a 
fourth-rank tensor T invariant under SO(7). We present below the two sets 
of equations corresponding to the eigenvalues 1 and - 3  of T. The first set, 
corresponding to the eigenvalue 1, is given below. In the following, 0) will 
denote a 2-form, and 0);j will be its components with respect to an orthonor- 
mal basis. 

Set  a: 

0)12 "]- 0)34 d'- 0)56 -'1- 0)78 = 0 

0)13 - -  0)24 "]- 0)57 - -  0)68 = 0 

0)14 Jr- 0)23 - -  0)67 - -  0)58 = 0 

0)15 - -  0)26 - -  0)37 Jr- 0)48 = 0 

0)16 "[- 0)25 -Jr- 0)38 "]- 0)47 = 0 
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t.~17 - -  (O28 "[- 1.035 - -  0.)46 = 0 

(.O18 + is)27 - -  (.036 - -  (-045 = 0 (2.1) 

The second set is obtained by equating the terms in each row: 
Set b: 

oJ12 = co34 = to56 = coTS . . . .  (2.2) 

Note that Set a is the orthogonal complement of Set b with respect to the 
standard inner product on matrices, (,4, B) = tr AB ~. 

2.1. The Number of Free Parameters in the Solution of Set b 

Let F be the curvature 2-form, F = ~o,b FabEab, where the Eob are basis 
vectors for the Lie algebra of the gauge group. Assume that each 2-form Fob 
satisfies the equations in Set b, or more generally belongs to any linear 
submanifold of 9O8 t_J {0}. As these equations are overdetermined, there may 
not be any solutions. We recall that a topologically nontrivial solution (i.e., 
where F is not an exact form) is given by Grossman et al. (1984). Here we 
will show that, for an N-dimensional gauge group, if the field equations are 
consistent, then the solution depends at most on N arbitrary constants. 

Set b represents 21 equations for the eight components of the connection 
l-form. In addition, if we impose the Coulomb gauge condition, for each 
Fob we have a system of 22 equations for eight unknowns. However, the 
integrability conditions of the equations for the connection 1-form become 
quickly very cumbersome. Thus, instead of looking at the compatibility of 
the differential equations for the connection, we look at the Bianchi identities, 
which are viewed as first-order differential equations for the curvature, i.e., 

dFob = AacFcb - FacAcb (2.3) 

If each 2-form Fob satisfies the equations in Set b or more generally belongs 
to a linear submanifold of 9~ U {0}, it can be written as Fob = E7=t Fo~hii , 

with respect to some basis {h~ ] [one set is actually given by (2.9)]. Then 

7 8 

dFob = ~ ~ OjF~.~.xJh; (2.4) 
i=1 j = l  

Thus the Bianchi identities, which are 3-form equations, consist of sets of 
56 algebraic equations for the 56 partial derivatives OjFiob for each pair of 
indices (ab). It is checked that this system is nondegenerate; therefore if the 
gauge group is Abelian, then the Bianchi identities reduce to homogeneous 
equations and the Fob are constants. In the non-Abelian case, the Bianchi 
identities form an inhomogeneous system, from which all partial derivatives 
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of the Fob are determined. Therefore, if the gauge field equations for the 
connection are consistent, then the resulting curvature 2-forms F~b can depend 
at most on one arbitrary constant for each pair of indices (ab). Thus we have 
the following result. 

Proposition 2.1. Let F = dA - A ^ A, where A belongs to an N- 
dimensional Lie algebra and F~b satisfy the equations in Set b. Then, if the 
system is compatible, F can depend at most on N arbitrary constants. 

2.2. Ellipticity Properties of Set a and Set b 

Recall that F = dA - A ^ A, and the characteristic determinant (John, 
1982) of the field equations are obtained using the linear part of this equation, 
i.e., F -- dA. The Coulomb gauge condition is 

~Oi Ai = 0 (2.5) 
i 

The characteristic determinant of Set a together with the Coulomb gauge 
condition is obtained and we have the following result. 

Proposition 2.2. The characteristic determinant of Set a together with 
the Coulomb gauge condition is 

hence the system is elliptic. 

A system of elliptic equations should have as many equations as 
unknown. The requirement of ellipticity is the injectivity and the surjectivity 
of the symbol. If the symbol is injective (but not surjective), then the system 
is called overdetermined elliptic. The injectivity of the symbol leads to certain 
inequalities in terms of various Sobolev norms (Donaldson and Kronheimer, 
1990). On the other hand, the surjectivity of the symbol guarantees the 
solvability of the system. Thus if a system is overdetermined elliptic, one 
can still use standard results from elliptic theory, provided that the existence 
of solutions to the overdetermined system are guaranteed. 

Set b together with the Coulomb gauge condition have subsystems whose 
characteristic determinants are positive semidefinite. As these determinants 
can vanish at points where not all the ~i's are zero, the system is not overdeter- 
mined elliptic. Nevertheless Proposition 2.1 of the previous section implies 
that local solutions are always finite dimensional, hence global solutions of 
Set b, if they exist, are finite dimensional regardless of the ellipticity properties 
of the system. 
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R e m a r k  2.3.  The  characteristic matrix A of  S e t  a satisfies the equation 
A A  t = k l ,  where t denotes the transpose, I is the identity matrix, and k = 
~8=, ~2. The first row of  the characteristic determinant,  arising from the 
Coulomb gauge condition, is the radial vector, hence the remaining seven 
rows represent tangent vector fields to S 7. Since S 3 and S 7 are the only 
parallelizable spheres, the equations in S e t  a are unique analogs of  the self- 
duality equations in four dimensions, as already noted in Corrigan et  al. 

(1983). 

2.3. An Alternative Derivation of  Set a and Set b 

We recall that squares of  strongly-self  dual 2-forms are self-dual in the 
Hodge sense (Bilge et  al . ,  1996) and the maximal linear subspaces of  strongly 
self-dual 2-forms are a six-parameter family of  seven-dimensional  spaces. 
In this section we will obtain analogs of  Eqs. (2.2) that will be used in Section 
3. Similar  equations are also obtained in Bilge e t  al.  (1995). 

We fix a nondegenerate  2-form h~ = el2 + ore34 + 13e56 -I- "~/e78 , and 
we consider  the 2-forms hj = el(y+,) + K] f o r j  = 2 . . . . .  7 such that the 
Kj do not involve el and ey+l. The  requirement that (hl + hj )2 be self-dual 
gives linear equations for the components  o f  the hi .  Once these equations 
are solved, the nonlinear equations obtained from the self-duality of  (h~ + 
hj 2 for  i 4 : 1  can be solved easily and we obtain the fol lowing result. 

P r o p o s i t i o n  2.4.  Let h~ = el2 + ore34 -Jr 13e56 + ~/e78, and h i , j = 2, 
. . . .  7, be of  the form hj = e,~/+,) + Kj, such that (e,, Kj> = (ej+t, K i > = 
0. If the 4-forms (h~ + h i )2 are self-dual for all i, j ,  then the h~ are 

hi = el2 + 13~/e34 + 13e56 + "Ye78 

hl  = el3 - 13'ye24 q- 13c'e57 - 13ce58 - "yce67 - "yc'e68 

h~ = el4 q- 13'ye23 - ce57 - c 'e58 - 13"yc' e67 -4- ~'yce68 

h,~ = et5 - 13e26 - 13c'e37 + 13ce3s + ce47 + c'e48 

h'5 = el6 + 13e25 + "yce37 + ~1c'e38 + 13"yc'e47 - 13~ce48 

h~ = el7 - "Ye28 + 13c'e35 - ~1ce36 - ce45 - ~ ' yc '  e46 

h-~ = el8 + ~e27 - 13ce35 - "yc'e36 - c'e45 + 13~lce46 (2.7) 

where 132 = ~/2 = c 2 + c,2 = 1. 

Thus,  depending on the possible choices for 13 and ~/, we have four sets 
of  seven equations parametrized by c and c ' .  We denote these forms by h~, 
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k[, m[, and n" corresponding, respectively, to the cases ([3 = 1, 3' = 1), 
(13 = 1, 3' = - 1 ) ,  (13 = - 1 ,  3' = 1), and (13 = - 1 ,  3' = - 1 ) .  

The set consisting of the 28 forms thus obtained is, however, linearly 
dependent for any e and e'. To retain similarity with (2.2) we set c' = 1 and 
c = 0, and we obtain the following linear submanifolds of b~ O {0}: 

B ++ = span{hl, h~, hl, h~, hl, h~, hl} 

B +- = span{k't, k~, k~, k~, k;, k~, k6} 

{ ' ' k ;  ' ' ' k ~ }  B - +  = span  m l ,  m2, , m4 ,  m5 ,  m 6 ,  

. . . . .  k~} ( 2 . 8 )  B - -  = span{n't, n2, h3, m4, ns, n6, 

A basis for 2-forms on R 8 can be obtained by adding 

P'l = el4 - e23 + e58 - e67 

p-~ = e l 4  + e23 + ess + e67 

p~ = e~5 + e26 - -  e37 - -  e48 

p,~ = e l 5  - -  e26 -t- e37 - -  e48 

p~ = e zs + e27 -1- e36 q" e45 

p~ = el8 - e27 - e36 + e45 (2.9) 

to the 2-forms in (2.8). 
The analog of the equations in Set b are obtained by restricting t~ to 

the subspaces in (2.8). Similarly the analogs of Set a are obtained by taking 
orthogonal complements. The coefficients of to with respect to the basis 
consisting of the h', k[, m[, n[, and p" will be denoted by the same symbols 
without prime. 

3. AN EIGENVALUE CHARACTERIZATION OF S E T  a AND AN 
ACTION DENSITY 

We recall the following definition given in Bilge et al. (1996). 

Definition 3.1. Let to be a 2-form in 2n dimensions, with components 
oJ,.j with respect to an orthonormal basis. The 2-form to is called strongly 
self-dual if the absolute values of the eigenvalues of the matrix toij are 
equal. The nonzero strongly self-dual 2-forms belong to a 13-dimensional 
submanifold 5~ and the solutions of Set b are among the maximal linear 
submanifolds of 508 t_J {0} (Bilge et al., 1995). 
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We will define below a subvariety @8 which contains the solutions of  
Set a as a maximal  linear submanifold.  

Let  the eigenvalues of  the matrix s be +-ihk, k = 1 . . . . .  4, and define 
qj to be the j th  elementary symmetr ic  function of  the k 2. Then 

(s s = s 2 = 4 q t  = k21 + k ~ +  k 2 + k42 

1 
= = = h l k  2 + - -  h lh  3 + + h2h  3 )k2h 4 )k3h 4 kl~. 4 + + 22 (02, s S4 6q2 2 2 2 2 2 2 2 2 2 2 2 2 

l 'x2x2"x2 -F 'X2X2X2 -F x2"x2x2 _]_ ~2"L2X2 62 (to 3, s S6 4q 3 ,, I '~.2'~'3 ,~. 1 '~ '2 '~ '4  ,~. I 1~'3A4 '~'2'~'3'~'4 

1 = x2~t 2'~ 2~2 (3.  l )  2~ 2 (s s = s8 = q4 '~1'~2"3',4 

We have the inequalities 

q2 > q2 >- , ~ 4  (3.2) 

the equalities being saturated iff all the eigenvalues are equal (Marcus and 
Minc, 1996), i.e., for  the strongly self-dual forms. This corresponds to the 
case where the quantities 

A = (s s _ 2(s  s (3.3) 

B = (s s _ (s s 

vanish. Proposit ion 3.2 below implies that the quantity 

= A + I B  = (s s _ I(s s _ 1(s s (3.4) 

is a measure of  the power o f  the anti-self-dual part of  s 

Proposition 3.2. Let (s s >_ (s s and �9 = (a), s _ ct(to2+, 
s where s "denote the self-dual and anti-self-dual parts of  s Then, 
max a such that ~ is nonnegat ive for all s is a = 2/3. 

Proof. If  (s s _> (s s then (s s = ,s = (s s 

_ (s s From the inequalities (3.2), it can be seen that a --< 2/3. On 
the other  hand, the equality is attained for s e 9~ hence a = 2/3. �9 

It is an elementary fact that the product IAB ,  under the constraint A + 
I B  = const, is maximized for �9 = A - I B  = 0 and minimized for A = 0 
or B = 0. The  condition A - I B = 0 gives 

At)" = (s s __ (s 0)2) .4- 1(s s .~_ 0 (3.5) 
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Thus we have the fol lowing result. 

Proposition 3.3. Let  ~ = (/0, /0)2 _ .~(/02, /02) _ .~(/04, /04)1/2 be 
fixed and (/0, /0)2 _ .~(/02, to2) be nonzero.  Then  the quanti ty [(/0, /0)2 
__ 2( /02  , /02)][(/01,  0.)2) - -  (/04, {.104)1/2] is max ima l  for  �9 = (co, /0)2 _ (/02, 
/02) + 1( /04,  /04) 1/2 = 0 .  

The  express ion o f  �9 in terms of  the/0,../is very complicated.  However ,  
it reduces to a relat ively s imple fo rm under  a change  o f  parameters .  I f  we 
reparametr ize  the e igenvalues  as 

61 -- (h I -4- h 2 q- h. 3 q- ~-4) 

62 = (hi - ~-2 - h3 + h4) 

63 = (h I -- h 2 -t- h 3 -- h4) 

= (hi + h2 -- h3 -- M) (3.6) 

then ~ reduces to 

= (/0,/0)2 _ (/02,/02) q_/(/04,/04)1a = 61626364 (3.7) 

We note that we could obtain a similar  decompos i t ion  for  (co,/0)2 _ (/02,/02) 
_ .~(/04,/04)1r2 if we define the ei with an odd n u m b e r  o f  minus  signs. 

The  equali ty o f  the hi corresponds to the case  where  any three o f  the 
6,- are zero. The  appropriate  nonlinear set containing solutions of  Set a is 
thus the set where  only one o f  the 6 / i s  zero. The  explicit  express ion o f  
when to is written with respect  to the basis g iven  in (2.10) and (2.11) is 

= ht[kt(mlnl  + m4P3 "Jr msns) + k2(nlm2 - m4P6 q- msn6) 

+ k3(n,pl - p3n6 - nsp6) + k6(mln6 + mgpi - nsm2) 

q- k7(mlp 6 + p3m2 + m5pl)] 

+ h2[kl(mln2 + m4P5 + nsm6) + k2(m4P4 + m2n2 + n6m6) 

+ k3(nsp4 - n6p5 + pinE) + k s ( - m l n 6  - m4pt + nsm2) 

+ k 7 ( - m t P 4  + m2p5 + ptm6)] 

-4- h3[kt(mlp 2 if- p3m6 - msps) + k2( -msP4  + mEP2 - p6m6) 

+ k3(P3P4 + P6P5 + PIP2) + ks(mlp6 + p3m2 + msPl) 

+ k 6 ( - m l p  4 + m2p5 + plm6)] 

+ h4[ml(nlP4 -t- p6n 2 + n6P2) -t- m 2 ( - n l p  5 -t- p3n2 - nsP2) 

+ m4(p3P4 q- P6P5 -t- P.P2) + m5(nsp4 - n6ps + pin2) 

+ m 6 ( - n l P l  + p3n6 + nsP6)] 
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+ hs[k2(-nlm6 + m4P2 + msn2) + k3(nlp5 - p3n2 + nsp2) 

+ ks(mint + m4P3 + msn5) + k6(mln2 + m4p5 + nsm6) 

+ k7 ( -m lP2  - p3m6 + rasps)] 

+ h6[kl(nlm6 - maP2 - m5n2) + k3(nlP4 + p6n2 + n6P2) 

+ ks(nlm 2 - m4p 6 q- msn6) q- k6(m4p 4 --t- m2n2 + n6m6) 

+ kT(msp4 - m2P2 -t- p6m6)] 

+ hT[kl(nlp 5 - p3n2 q- n5P2) + k2(nlP4 + p6n2 + n6p2) 

+ k s ( - n t p l  + p3n6 + nsP6) + k6(-n5P4 + n6ps - pin2) 

+ kT(P3P4 + P6P5 + PIP2)]- (3.8) 

F r o m  (3.8), it can be seen that �9 = 0 both on Set a, where all hi are 
zero, and on Set b, where  all the parameters  except  the hi are zero. Actually, 

vanishes  on the complemen t  o f  each o f  the subspaces  in (2.10), which are 
21-dimensional  l inear submanifo lds  of  ~'s. By assigning arbitrary values to 
the remaining  parameters ,  it can be seen that these 21-dimensional  submani-  
folds are maximal .  Hence  solutions of  Set a (and their analogs) are among  
the max ima l  linear submanifo lds  o f  @s- 
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